Table of Contents | ||||||
---|---|---|---|---|---|---|
|
Introduction
This page deals with vectorization and optimization of Radioss Fortran code. This is a fundamental aspect of the code that needs to be well understood and learned by new Radioss programmers. Breaking performance of current code is not allowed. Furthermore, new functionality should be developed taking into account the same level of care regarding performance.
Vectorization deals with the execution of computational loops. It allows a computer to compute several loop indexes during the same cycle leveraging vector registers. This concept was first introduced on vector supercomputers (CRAY, NEC, FUJITSU…)
Nonetheless, though there are no more vector supercomputers, vectorization is reintroduced on modern CPUs like Xeon processor with AVX and AVX512
For instance, AVX512 first introduced into Intel Xeon Phi Knights Landing and Xeon Skylake allows the handling of 8x 64-bit double precision real at the same time or 16x single precision
Vectorization
Vector Length
Most computations in Radioss, like element or contact forces, are performed by packets of MVSIZ
. This parameter is adjustable to match so-called vector length. This parameter is also important for cache locality. It is optimized by parallel development team according to hardware characteristics
New treatments need to respect this programming model which is to split the loop over number of elements or nodes by packets of MVSIZ
. This will ensure optimal vector length and cache size as well as minimal local storage (local arrays of size MVSIZ
instead of number of elements or nodes)
Loop Control
IF/THEN/ELSE
It is recommended to minimize the use of IF/THEN/ELSE
instruction inside computational loop
Every time a test does not depend on loop index value, it is asked to perform it outside of such loop
GOTO
GOTO
is absolutely forbidden inside computational loops as it inhibits vectorization and optimization
EXIT/CYCLE
EXIT
and CYCLE
need to be minimized and avoided in computational loops
Loop Size
Inside a loop it is recommended to keep the number of instructions reasonable. 20 instructions or less is good. Very long loops should be split to keep cache efficiency
Most compilers will be able to fuse short loops, while they will probably fail to vectorize long complex loops
Data Dependency
The loop below is not vectorized due to possible dependence (same value of INDEX(I)
for different I
):
Code Block | ||
---|---|---|
| ||
DO I = 1, N
K = INDEX(I)
A(K) = B(K)
B(K) = 2*A(K)
END DO |
In case of no true dependence, vectorization needs to be forced by adding a compiler directive
To keep portability across different platforms and compilers, an architecture specific include file exists named vectorize.inc that manages vectorization directives. The programmer just needs to add this include file just before the DO
loop:
Code Block | ||
---|---|---|
| ||
#include "vectorize.inc"
DO I = 1, N
K = INDEX(I)
A(K) = B(K)
B(K) = 2*A(K)
END DO |
Notice there is another include file named simd.inc which makes unconditional vectorization, even if a true dependence is detected by the compiler. It is recommended to only use vectorise.inc which is more conservative regarding correctness
For Intel compiler:
vectorize.inc corresponds to !DIR$ IVDEP
simd.inc corresponds to !DIR$ SIMD
Procedure CALL
Calling a procedure inside a loop inhibits vectorization therefore it is not authorized
Inside Radioss, there are vectorized versions of procedures, basically the loop is put inside the procedure rather than outside:
VALPVEC
to replaceJACOBIEW
VINTER
to replaceFINTER
Nested Loops
In practice, only the inner most loop will be vectorized. So the inner most loop needs to be the largest one.
For fixed size loops it is possible to unroll them by hand or to use Fortran90 enhancement. Then the compiler is able to vectorize the outer loop
Note |
---|
Unroll by hand is not enough on AVX512 or SSE architectures Only Fortran 90 syntax helps in this case |
Example Nested Loop with NEL >> DIM
Code Block | ||
---|---|---|
| ||
DO I = 1, NEL
DO J=1, DIM
A(I,J) = B(I,J) + C(I,J)
END DO
END DO |
To be transformed to:
Code Block | ||
---|---|---|
| ||
DO J=1, DIM
DO I = 1, NEL
A(I,J) = B(I,J) + C(I,J)
END DO
END DO |
Or using Fortran90 notation:
Code Block | ||
---|---|---|
| ||
DO I=1,NEL
A(I,:DIM)=B(I,:DIM) + C(I,:DIM)
END DO |
Or for this simple case:
Code Block | ||
---|---|---|
| ||
A(:NEL,:DIM)=B(:NEL,:DIM) + C(:NEL,:DIM) |
Arithmetic Functions
Power
Never use real variable for integer power because of the cost of real power arithmetic. Take
care to not use real variable defined in constant.inc when integer is enough
A**2
Allowed
A**DEUX
Forbidden as DEUX is a my_real
variable defined in constant.inc
A**DTIERS
here there is no other choice as a real power arithmetic is required
Div
For invariant, it is advised to multiply by invert instead of doing a division by a constant inside a loop
Arrays
Fortran90 Array Operations
Use of Fortran90 array operations is encouraged as long as code readability is kept, by always specifying array bounds to avoid confusion between variable and array arithmetic.
Example:
Code Block | ||
---|---|---|
| ||
INTEGER, DIMENSION(NUMNOD) :: A, B, C
A = B + C |
! confusion between variable and array operation
Code Block | ||
---|---|---|
| ||
A(:NUMNOD) = B(:NUMNOD) + C(:NUMNOD) |
! default lower bound:1
Multidimensional Arrays
Data Locality
Large arrays over a number of nodes or elements are defined to maximize data locality and have therefore the smallest dimension first, like in the example below:
Code Block | ||
---|---|---|
| ||
X(3,NUMNOD), V(3,NUMNOD), A(3,NUMNOD) |
Leading Dimension for Vectorization
For vectorization on Xeon, it is better to have leading dimension first. So, depending on array size and access pattern a compromise needs to be found:
For large arrays like X, V, A, it is better to keep locality
For data structure of few times
MVSIZ
, like new element buffer arrays or temporary arrays of size x timesMVSIZ
, having largest dimension first is better:
HOUR (MVSIZ,5)
better than HOUR(5,MVSIZ)
According to test with recent Intel compiler, Fortran90 array notation can also improve code generated:
A(I,1:3) = B(I,1:3) + C(I,1:3)
no need to unroll loop
Comments
Expand | |||||
---|---|---|---|---|---|
It is important to comment important algorithms, especially when non straightforward coding is used Comments are written in English Comments respect Fortran90 standard. The use of " Except for precompiler directives, the following characters Example:
|
Modules
Module Format
Generic format of a Fortran90 module is as follows:
Code Block | ||
---|---|---|
| ||
MODULE <module name>
USE [other module list]
#include "implicit_f.inc"
<declaration section>
CONTAINS
<procedure definitions>
END MODULE <module name> |
Naming Convention
Module name is defined as follows: MODULENAME_MOD
With module file name: modulename_mod.F
Module file is placed at the same location as other files used by the option
Module Usage
3 types of usage:
Derived data types definition
Variable names declaration (in replacement of commons)
Procedure interface (data type & argument list control,…)
Good practice is to split type declaration from variable declaration into 2 different modules.
This way it is possible to pass variables defined in modules at upper level (resol) into calling tree at lower levels
Then, such derived data type variables passed as argument of procedures can be defined using the module which defines them, allowing traceability of such variables throughout the code
The procedure that uses such variables passed by argument needs to include the module that defines derived data types
Example of derived data types (comments compliant with Doxygen):
Code Block | ||
---|---|---|
| ||
C====================================================================
C DUMMYDEF_MOD modules/dummydef_mod.F
C-------------------------------------------------------------------
C> Description:
C> define DUMMY struture
C-------------------------------------------------------------------
C> called by: \n
C> @ref DUMMY starter/src/test/dummy.F \n
C> @ref DINIT starter/src/test/dinit.F \n
C> @ref DSOLVE starter/src/test/dsolve.F \n
C>\n calling: \n
C====================================================================
MODULE DUMMYDEF_MOD
C-----------------------------------------------------------------------
C-----------------------------------------------
C M o d u l e s
C-----------------------------------------------
C-----------------------------------------------
C m y _ r e a l
C-----------------------------------------------
C-----------------------------------------------
C I m p l i c i t T y p e s
C-----------------------------------------------
#include "implicit_f.inc"
C=================================================
TYPE DUMMY_STRUCT_
C=================================================
INTEGER :: L_ITAB !< size of integer array ITAB
INTEGER :: L_RTAB !< size of integer array RTAB
INTEGER, DIMENSION(:) , POINTER :: ITAB !< integer array ITAB
my_real, DIMENSION(:) , POINTER :: RTAB !< real array RTAB
END TYPE DUMMY_STRUCT_
END MODULE DUMMYDEF_MOD
C====================================================================
C DINIT starter/src/test/dinit.F
C-------------------------------------------------------------------
C> Description: \n
C> Allocate and initialize variable MY_DUM of type DUMMY_STRUCT_
C-------------------------------------------------------------------
C> called by: \n
C> @ref DUMMY starter/src/test/dummy.F \n
C>\n calling: \n
C====================================================================
SUBROUTINE DINIT(MY_DUM, NITEMS)
C-----------------------------------------------
C M o d u l e s
C-----------------------------------------------
USE DUMMYDEF_MOD
C-----------------------------------------------
C I m p l i c i t T y p e s
C-----------------------------------------------
#include "implicit_f.inc"
C-----------------------------------------------
C-----------------------------------------------
C G l o b a l P a r a m e t e r s
C-----------------------------------------------
C-----------------------------------------------
C C o m m o n B l o c k s
C-----------------------------------------------
C-----------------------------------------------
C D u m m y A r g u m e n t s
C-----------------------------------------------
INTEGER, INTENT(IN) :: NITEMS
TYPE(DUMMY_STRUCT_), INTENT(INOUT) :: MY_DUM
C-----------------------------------------------
C L o c a l V a r i a b l e s
C-----------------------------------------------
INTEGER :: N, IERROR
C-----------------------------------------------
MY_DUM%L_ITAB = NITEMS
MY_DUM%L_RTAB = NITEMS
ALLOCATE(MY_DUM%ITAB(MY_DUM%L_ITAB),MY_DUM%RTAB(MY_DUM%L_RTAB),
& STAT=ierror)
IF (IERROR /= 0) THEN ! better to use MY_ALLOCATE macro instead
print*,'error:',IERROR
stop 123
END IF
DO N = 1, NITEMS
MY_DUM%ITAB(N) = N
MY_DUM%RTAB(N) = N**2
END DO
RETURN
END SUBROUTINE DINIT
C====================================================================
C DSOLVE starter/src/test/dsolve.F
C-------------------------------------------------------------------
C> Description: \n
C> Solve some dummy problem
C-------------------------------------------------------------------
C> called by: \n
C> @ref DUMMY starter/src/test/dummy.F \n
C>\n calling: \n
C|====================================================================
SUBROUTINE DSOLVE(MY_DUM,RES)
C-----------------------------------------------
C M o d u l e s
C-----------------------------------------------
USE DUMMYDEF_MOD
C----6------------------------------------------
C I m p l i c i t T y p e s
C-----------------------------------------------
#include "implicit_f.inc"
C-----------------------------------------------
C G l o b a l P a r a m e t e r s
C-----------------------------------------------
C C o m m o n B l o c k s
C-----------------------------------------------
C-----------------------------------------------
C D u m m y A r g u m e n t s
C-----------------------------------------------
TYPE(DUMMY_STRUCT_), INTENT(INOUT) :: MY_DUM
my_real, INTENT(OUT) :: RES
C-----------------------------------------------
C L o c a l V a r i a b l e s
C-----------------------------------------------
INTEGER :: N, NITEMS,IERROR
my_real :: VERIF
C-----------------------------------------------
NITEMS = MY_DUM%L_RTAB
RES = 0.
VERIF = 0.
DO N = 1, NITEMS
RES = RES + MY_DUM%RTAB(N)
VERIF = VERIF + N**2
END DO
print *,'res=',res,' verif=0?:',RES-VERIF
DEALLOCATE(MY_DUM%ITAB,MY_DUM%RTAB,STAT=IERROR)
print *,'solve terminated with error code:',IERROR
RETURN
END
!====================================================================
! DUMMY starter/src/test/dummy.F
!====================================================================
!> Description: \n
!> Main routine which initialize and use a variable
!> of type DUMMY_STRUCT_
!====================================================================
!>\n called by: \n
!> @ref DUMMYEXT starter/src/test/dummyext.F \n
!>\n calling: \n
!> @ref DINIT starter/src/test/dinit.F \n
!> @ref DSOLVE starter/src/test/dsolve.F \n
!====================================================================
SUBROUTINE DUMMY(NITEMS)
C-----------------------------------------------
C M o d u l e s
C-----------------------------------------------
USE DUMMYDEF_MOD
C-----------------------------------------------
C I m p l i c i t T y p e s
C-----------------------------------------------
#include "implicit_f.inc"
C-----------------------------------------------
C-----------------------------------------------
C G l o b a l P a r a m e t e r s
C-----------------------------------------------
C-----------------------------------------------
C C o m m o n B l o c k s
C-----------------------------------------------
C-----------------------------------------------
C D u m m y A r g u m e n t s
C-----------------------------------------------
INTEGER, INTENT(IN) :: NITEMS ! number of NITEMS
C-----------------------------------------------
C L o c a l V a r i a b l e s
C-----------------------------------------------
TYPE(DUMMY_STRUCT_) MY_DUM ! dummy structure
my_real RES ! result of dummy solve
C-----------------------------------------------
CALL DINIT(MY_DUM,NITEMS)
CALL DSOLVE(MY_DUM,RES)
RETURN
END SUBROUTINE DUMMY
!====================================================================
! DUMMYEXT starter/src/test/dummy.F
!====================================================================
!> Description: \n
!> main program calling dummy \n
!>\n called by: \n
!>\n calling: \n
!> @ref DUMMY starter/src/test/d.F \n
!====================================================================
!> \warning program should not be put in the same file, just for
!> convenience and for the aim to put some warning message blablabla
!> \bug not good to call "dummy(10)", should be passed by address instead of a value
C====================================================================
PROGRAM DUMMYEXT
CALL DUMMY(10)
C> @note this comment is ignored or would be applied to next subroutine
C never do that with DOxygen !!!
C all Doxygen comments need to be put before the routine definition
END PROGRAM DUMMYEXT |
Restart Variables
All the variables communicated between Starter and Engine are declared in module RESTART_MOD
, used by subroutine ARRALLOC
for their allocation, by RDRESB
for their reading from RESTART file, then by RESOL_HEAD
in which they are used as argument for RESOL
subroutine. All these argument variables are then passed by argument to procedures called from RESOL
, ...)
Interface definition
Fortran90 interface allows the compiler to do additional checks like coherency between argument types, attributes and number between calling and callee routines. It is required in some cases like when a procedure has a dummy argument with attribute ALLOCATABLE, POINTER, TARGET
In practice, it was introduced in few places of the code for routines which were called at several different places
Such coherency is automatically tested by QA static analysis tools (Forcheck).
And for pointer, the good practice is to use derived data types instead of pointer directly
Therefore, the remaining use of interface is regarding routine with optional arguments
This feature should be spread in the code instead of adding additional “dummy” arguments
Interface Example
Example of an interface for a routine called at several places in the code. The routine is put in a module to guarantee automatic update of interfaces and recompilations of all routines using this routine in case of change (dependence automatically found by compiler)
Code Block | ||
---|---|---|
| ||
MODULE INITBUF_MOD
CONTAINS
Cgw|============================================================
Cgw| INITBUF src/resol/initbuf.F
Cgw|------------------------------------------------------------
Cgw| Description :
Cgw| Initialisation of vect01_c.inc variables
Cgw|-- called by -----------
Cgw| FORINT src/resol/forint.F
Cgw| FORINTS src/resol/forints.F
Cgw| ALEMAIN priv/ale/alemain.F
Cgw|============================================================
SUBROUTINE INITBUF (IPARG ,NG ,
2 MTN ,LLT ,NFT ,IAD ,ITY ,
C …
6 IREP ,IINT ,IGTYP ,ISRAT ,ISROT ,
7 ICSEN ,ISORTH ,ISORTHG ,IFAILURE)
C-----------------------------------------------
C I m p l i c i t T y p e s
C-----------------------------------------------
#include "implicit_f.inc"
C-----------------------------------------------
C C o m m o n B l o c k s
C-----------------------------------------------
#include "param_c.inc"
C-----------------------------------------------
C D u m m y A r g u m e n t s
C-----------------------------------------------
INTEGER, INTENT (IN) :: IPARG(NPARG,NGROUP),NG
INTEGER, INTENT (OUT) :: MTN,LLT,NFT,IAD,ITY,NPT,JALE,ISMSTR,
. JEUL,JTUR,JTHE,JLAG,NVAUX,JMULT,JHBE,JIVF,JPOR,JPLA,JCLOSE,
. IREP,IINT,IGTYP,JCVT,ISROT,ISRAT,ISORTH,ISORTHG,ICSEN,IFAILURE
C-----------------------------------------------
C S o u r c e L i n e s
C======================================================================
MTN = IPARG(1,NG)
LLT = IPARG(2,NG)
…
JCLOSE = IPARG(33,NG)
IREP = IPARG(35,NG)
IINT = IPARG(36,NG)
JCVT = IPARG(37,NG)
IFAILURE = IPARG(43,NG)
C----
RETURN
END SUBROUTINE INITBUF
END MODULE INITBUF_MOD
Cgw|============================================================
Cgw| FORINT src/resol/forint.F
Cgw|------------------------------------------------------------
Cgw|-- called by -----------
Cgw| RESOL src/resol/resol.F
Cgw|-- valls ---------------
Cgw| INITBUF src/resol/initbuf.F
Cgw|============================================================
SUBROUTINE FORINT(
1 PM ,GEO ,X ,A ,AR ,
2 V ,VR ,MS ,IN ,W ,
C…
K MSNF ,IGEO ,IPM ,XSEC ,ITASK)
C-----------------------------------------------
C M o d u l e s
C-----------------------------------------------
USE INITBUF_MOD
C----6---------------------------------------------------------------7---------8
C I m p l i c i t T y p e s
C-----------------------------------------------
#include "implicit_f.inc"
#include "comlock.inc"
C-----------------------------------------------
C G l o b a l P a r a m e t e r s
C-----------------------------------------------
#include "mvsiz_p.inc"
C-----------------------------------------------
C C o m m o n B l o c k s
C-----------------------------------------------
#include "com01_c.inc"
#include "com03_c.inc"
C-----------------------------------------------------------------
C D u m m y A r g u m e n t s
C-----------------------------------------------
INTEGER IXS(NIXS,*),
. IXQ(NIXQ,*), IXT(NIXT,*), IXP(NIXP,*),
. IXR(NIXR,*), IELVS(*), IGEO(NPROPGI,*),
. IXS16(8,*),IADS16(8,*),ITASK
C REAL ou REAL*8
my_real
. X(3,*) ,D(3,*) ,V(3,*) ,VR(3,*),
. MS(*) ,IN(*) ,PM(NPROPM,*),SKEW(9,*),GEO(NPROPG,*),
. BUFMAT(*) ,W(3,*) ,VEUL(*),TF(*) ,FR_WAVE(*)
C-----------------------------------------------
C L o c a l V a r i a b l e s
C-----------------------------------------------
INTEGER INDXOF(MVSIZ)
INTEGER I,II,J,N
my_real
. FX(MVSIZ,20),FY(MVSIZ,20),FZ(MVSIZ,20),
. MX(MVSIZ,4),MY(MVSIZ,4),MZ(MVSIZ,4)
C======================================================================|
CALL INITBUF (IPARG ,NG ,
2 MLW ,NEL ,NFT ,KAD ,ITY ,
3 NPT ,JALE ,ISMSTR ,JEUL ,JTUR ,
4 JTHE ,JLAG ,JMULT ,JHBE ,JIVF ,
5 NVAUX ,JPOR ,JCVT ,JCLOSE ,IPLA ,
6 IREP ,IINT ,IGTYP ,ISRAT ,ISROT ,
7 ICSEN ,ISORTH ,ISORTHG ,IFAILURE)
C
ICNOD = IPARG(11,NG)
KADDSA = 1+(KAD-1)*NDSAEXT
NSG = IPARG(10,NG)
C-----------
RETURN
END |
Memory Allocation
Dynamic memory allocation mechanism
Dynamic memory allocation is directly done at the Fortran90 level using MY_ALLOCATE
macro
This macro allows automatic error checks encapsulating call to Fortran90 ALLOCATE
statement
Previously, allocation error check was done by hand by the:
Code Block | ||
---|---|---|
| ||
CALL ALLOCATE(ITAB(NUMNOD),STAT=IERR)
IF(IERR/=0)THEN
WRITE(ISTDO,’(A)’) ‘ERROR IN MEMORY ALLOCATION’
WRITE(IOUT,’(A)’) ‘ERROR IN MEMORY ALLOCATION’
CALL ARRET(2)
END IF
C…
CALL DEALLOCATE(ITAB) |
In practice, error checking was missing in many places. Therefore, the idea to use a macro to automatically control allocation, handle error message and execution stop in case of failure was implemented.
Here is the macro detail:
Code Block | ||
---|---|---|
| ||
#ifndef MY_ALLOCATE
#define MY_ALLOCATE(ARRAY,LENGTH)\
ALLOCATE(ARRAY(LENGTH),STAT=MY_IERR);\
IF(MY_IERR/=0) THEN;\
CALL ANCMSG(MSGID=268,MSGTYPE=MSGERROR,ANMODE=ANSTOP,C1=#ARRAY);\
ENDIF
#endif |
The previous code becomes:
Code Block | ||
---|---|---|
| ||
USE MESSAGE_MOD
C…
#include “my_allocate.inc”
C…
CALL MY_ALLOCATE(ITAB,NUMNOD)
C…
CALL DEALLOCATE(ITAB) |
Developers are required to check the success of the allocation
The message printed by this macro in case of allocation failure is rather generic. For large arrays it is preferred to print a specific message, with advice for the user, or at least the option concerned by this failure
Global Memory
Memory allocation of global data structures, arrays and derived data types, should be done at the highest level, in LECTUR
for Starter, in RADIOSS2
or RESOL
for Engine
It is advised to use derived data type with structure of arrays. This way it is possible to declare the variable at the upper level, gather the allocation of array members in a dedicated subroutine, then use the variable in procedures called at lower level without losing traceability
Local Memory
In a procedure, local variable allocation method depends on its size:
The size is known and limited to a multiple of MVSIZ
Automatic allocation in the stack is ok
The size is not known or larger than times MVSIZ
It is then too large to use automatic allocation in the stack. It is therefore needed to use dynamic allocation in the heap
Automatic Allocated arrays go into Stack
ALLOCATED ARRAYS go into Heap
One should take care to reduce Stacksize usage to a reasonable size.
Stacksize is hardcoded under Windows
It is allowed to use MY_ALLOCATE
at the beginning of a routine provided matching DEALLOCATE
is done at the end of this routine
In case of multiple calls to MY_ALLOCATE
, a call to DEALLOCATE
must be applied to the variable used in the last previous call to MY_ALLOCATE
to avoid a memory hole and need for a garbage collector
Local Memory Example:
Code Block | ||
---|---|---|
| ||
CALL MY_ALLOCATE(VAR1)
CALL MY_ALLOCATE(VAR2)
C…
DEALLOCATE(VAR2)
C…
CALL MY_ALLOCATE(VAR3)
C…
DEALLOCATE(VAR3)
C…
DEALLOCATE(VAR1) |
Shared Memory Programming (SMP) and memory allocation
For RADIOSS Engine, OpenMP programming model is used for second level parallelization
By default any memory allocation done outside of a parallel section is shared between threads
Most of the parallel sections are started from RESOL
. So for the need of a shared memory array, the simplest way is to declare it at the level of RESOL
. It will be shared inside the different parallel sections started from RESOL
, possibly passed by argument to routines called from RESOL
The same way, any variable defined in a common or module is shared by default
For pointer, notice that a single thread needs to allocate and deallocate it. The programmer has to manage synchronization in order to insure such a variable is allocated before being used by any other thread and no longer used before it is deallocated
The !$OMP THREADPRIVATE directive overrides default behavior by creating thread local storage variables
Array Aliasing
Expand | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DescriptionHere we discuss different arguments of a procedure referencing the same memory locations. The compiler won’t be able to detect in the procedure that different argument variables reference one or more identical memory locations. Such a situation is particularly dangerous because of compiler optimization. Even if compilers are not forbidden it, if both variables are modified inside the procedure this could lead to unpredictable results. Potential conflicts or dependencies won’t be detected Code Example:
Tested on SGI O200 IRIX 6.4: output:
|